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Abstract:  In order to perform the screening of new potential pollution points and to estimate their impact on the environment, 

a molecular docking and quantitative structure-activity relationship (QSAR) model of some polychlorinated 

aromatic compounds was developed for further understanding of the mechanism of toxicity. From molecular 

docking, hydrogen-bonding, hydrophobic, Van der Waals, Pi-sigma, Amide-Pi stacked, Alkyl, Pi-Alkyl and π − π 

interactions were observed to be characteristic interactions between compounds and aryl hydrocarbon receptor 

(AhR). Based on the mechanism of interactions, an optimum 3D-QSAR model with good robustness (R2 =

0.930)and predictability (Rpred
2 = 0.824) was developed by Genetic function approximation (GFA). Additionally, 

the developed QSAR model indicated that the distribution of charge, the distant intramolecular, molecular size, 

shape profiles, polarizability and electropological states of compounds were related to the binding affinities to 

AhR. Hence, the model can be used for the screening of ligands for AhR binding activity. 

Keywords:  Aryl hydrocarbon receptor (AhR), genetic function approximation, QSAR 

 

 

Introduction 

Several members of the broad class of polyhalogenated 

aromatic compounds (PHAs), including polychlorinated 

dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and 

biphenyls (PCBs), produce characteristic toxicity syndromes 

(Hanschet al., 2002). The chemical mechanisms for the 

toxicity are complicated, and most remain poorly understood. 

They are classed as persistent organic pollutants (POPs) under 

the Stockholm Convention (Márcia, 2004). They are a large 

class of ubiquitous organic pollutants and have received great 

attention because of their carcinogenic, teratogenic and 

mutagenic properties (Gallegos et al., 2001; Kumar et al., 

2001; Borosky&Laali, 2005; Xue&Warshawsky, 2005). 

Being hydrophobic and lipophilic, these compounds 

accumulate in the marine environment in sediments and 

lipid‐rich tissue of marine organisms, making these matrices 

preferred media for environmental monitoring (Gerhard & 

Rainer, 2012).Previous studies have demonstrated that several 

toxic and biochemical effects caused by dioxin-like chemicals 

are mediated through a particular protein complex known as 

the aryl hydrocarbon receptor AhR (Landers &Bunce, 1991; 

Lucieret al., 1993; Nebertet al., 1993; Hestermannet al., 

2000). Thus, binding to AhR is a key step for contaminants 

exhibiting their toxicity (Hilscherovaet al., 2000). Hence, 

AhR activated by the ligands play a key role in adverse effects 

(Ohura et al., 2010).  

 The aryl hydrocarbon receptor (Ah receptor or AhR) is a 

ligand-activated transcription factor belonging to the basic-

helix-loop-helix (bHLH) PAS family (Schmidt & Bradfield, 

1996; Burbachet al., 1992; Kewleyet al., 2004; Whitlock, 

1993; Huang et al., 1993). It is a nuclear receptor, located in 

the cytoplasm and exists as one component of the complex 

(Chen and Perdew, 1994); the other components being two 

molecules of heat shock protein (hsp90), an X-associated 

protein and a co-chaperone protein (Perdew, 1988). The AhR 

protein is a cytosolic transcription factor that is normally 

inactive, being attached to several co-chaperones. Upon 

binding to some natural ligands (e. g. bilirubin, prostaglandin 

G) or synthetic chemicals (such as polychloro compounds or 

aromatic hydrocarbons), the chaperones dissociate allowing 

the translocation of AhR into the nucleus leading to changes 

in gene transcription, and resulting in the induction of 

metabolizing enzymes that cause the production of 

metabolites which should be more easily excreted but in this 

case are more toxic (Martin et al., 2016). 

A quantitative risk assessment becomes increasingly 

important in the modern society and is slowly incorporated 

into legislation of different countries. For instance, the 

European Union (EU) has introduced the Registration, 

Evaluation and Authorization of Chemicals (REACH) 

program for assessment of human and environmental risk of 

all chemicals that are produced or imported in the amount 

greater than 1 ton per year. It is clear that if such a risk 

assessment is performed purely experimentally, it would 

require a huge amount of resources as well as time. Therefore, 

the introduced REACH by European Union, encouraged the 

use of QSAR modeling and other alternatives especially for 

the risk assessment of chemicals that are produced or 

imported in smaller quantities (Martin et al., 2016).  

In this study, the three-dimension crystal structure of AhR 

was obtained by homologous modeling. Molecular docking 

was performed to define a model for the further understanding 

of the binding interactions between ligands and receptor 

interactions. Based on the mechanism of interaction, an 

optimal QSAR model of AhR binding affinity of PCBs, 

PCDDs and PCDFs was developed based on the experimental 

data taken from Martin et al. (2016) and Huifenget al. (2011). 

From the developed QSAR model, critical molecular 

structural features related to the AhR binding affinity of 

PCBs, PCDDs and PCDFs were identified. Furthermore, the 

developed model was externally validated. 

 

Materials and Methods 

The following materials were utilized in this research: 

ChemDraw Ultra 12.0, Cambridge Soft Corp. 

(www.cambridgesoft.Corn), USA;PyRx software 

(http://pyrx.sourceforge.net, Scripps Institute); Accelerys 

Discovery Studio 4.5 version, Ligplot and AutoDock 4.2. 

(Anithaet al., 2013) with MGL tools 

(http://mgltools.scripps.edu/downloads) installed on a Dell 

personal computer (PC) equipped with 8GBRAM capacity, 

processor intel CORE TMi5, hard disc capacity of 1000 GB 

and CPU@ 2.20GHz2.20GHz  running on 64-bit Operating 

System and data set of 71 molecules was collected from 

published literature (Azeddineet al., 2014; Huifenget al., 

2011; Martin et al., 2016). The chemical structures and the 

biological response (pEC50) of these 71 molecules are 
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presented in Table 1. The entire set of compounds was divided 

into two subsets: training set (70%) consisting of 49 

molecules were used to build the actual models, and test set 

(30%) consisting of 22 molecules, not found in the training 

set, were used to validate the models once they were built. 

Members of each set were assigned using Kennard Stone 

method.  
 

Table 1: The chemical structures and biological response 

(Observed and predicted pEC50) of polychlorodibenzodioxins, 

polychlorodibenzofurans and polychlorobiphenyls 

S/N Name 
Observed 

pEC50 

Predicted 

pEC50 

1b 2-Chlorodibenzofuran 3.55 3.54 

2a 3-Chlorodibenzofuran 4.38 4.17 

3a 4-Chlorodibenzofuran 3.00 3.50 

4a 2,3-Dichlorodibenzofuran 5.33 5.05 

5a 1,3,6-Trichlorodibenzofuran 5.36 4.87 

6a 1,3,8-Trichlorodibenzofuran 4.07 4.84 

7a 2,3,4-Trichlorodibenzofuran 4.72 5.69 

8a 2,3,8-Trichlorodibenzofuran 6.00 5.99 

9a 2,6,7-Trichlorodibenzofuran 6.35 6.20 

10a 2,3,4,6-Tetrachlorodibenzofuran 6.46 6.46 

11a 2,3,4,8-Tetrachlorodibenzofuran 6.70 6.64 

12a 2,3,7,8-Tetrachlorodibenzofuran 7.39 7.33 

13a 1,2,4,8-Tetrachlorodibenzofuran 5.00 4.89 

14a 1,2,4,7,9-Pentachlorodibenzofuran 4.70 4.94 

15a 1,2,3,7,8-Pentachlorodibenzofuran 7.13 6.83 

16a 1,2,4,7,8-Pentachlorodibenzofuran 5.89 6.09 

17a 2,3,4,7,8-Pentachlorodibenzofuran 7.82 7.73 

18b 1,2,3,4,7,8-Hexachlorodibenzofuran 6.64 7.08 

19a 1,2,3,6,7,8-Hexachlorodibenzofuran 6.57 6.75 

20a 2,3,4,6,7,8-Hexachlorodibenzofuran 7.33 7.27 

21a 2,3,6,8-Tetrachlorodibenzofuran 6.66 6.67 

22a 1,2,3,6-Tetrachlorodibenzofuran 6.46 5.97 

23a 1,2,3,7-Tetrachlorodibenzofuran 6.96 6.30 

24a 1,3,4,7,8-Pentachlorodibenzofuran 6.70 6.83 

25a 2,3,4,7,9-Pentachlorodibenzofuran 6.70 6.15 

26b 1,2,3,7,9-Pentachlorodibenzofuran 6.40 6.08 

27a Dibenzofuran 3.00 3.04 

28a 8-Hydroxy-2,3,4-trichlorodibenzofuran 6.52 6.65 

29a 3,8-Dihydroxy-2-chlorodibenzofuran 5.43 5.63 

30a 8-Hydroxy-2-monochlorodibenzofuran 6.52 5.96 

31b 8-Hydroxy-3,4,6-trichlorodibenzofuran 6.52 5.83 

32b 8-Hydroxy-3,4-dichlorodibenzofuran 6.22 6.06 

33a 8-Hydroxy-3-monochlorodibenzofuran 6.37 6.59 

34a 2,3,7,8-Tetrachlorodibenzo-p-dioxin 8.00 7.79 

35a 1,2,3,7,8-Pentachlorodibenzo-p-dioxin 7.10 7.26 

36a 2,3,6,7-Tetrachlorodibenzo-p-dioxin 6.80 6.82 

37a 2,3,6-Trichlorodibenzo-p-dioxin 6.66 6.06 

38a 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 6.55 6.46 

39a 1,3,7,8-Tetrachlorodibenzo-p-dioxin 6.10 6.72 

40a 1,2,4,7,8-Pentachlorodibenzo-p-dioxin 5.96 5.99 

41b 1,2,3,4-Tetrachlorodibenzo-p-dioxin 5.89 5.08 

42a 1,3,7-Trichlorodibenzo-p-dioxin 7.15 7.36 

43b 1,2,3,4,7-Pentachlorodibenzo-p-dioxin 5.19 5.89 

44b 1,2,4-Trichlorodibenzo-p-dioxin 4.89 4.45 

45a 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin 5.00 4.83 

46a 1-Chlorodibenzo-p-dioxin 4.00 4.20 

47a 2,3,7,8-Tetrabromodibenzo-p-dioxin 8.82 9.02 

48b 2,3-Dibromo-7,8-dichlorodibenzo-p-dioxin 8.83 8.66 

49b 2,8-Dibromo-3,7-dichlorodibenzo-p-dioxin 9.35 9.05 

50b 2-Bromo-3,7,8-trichlorodibenzo-p-dioxin 7.94 8.69 

51a 1,3,7,9-Tetrabromodibenzo-p-dioxin 7.03 6.68 

52b 1,3,7,8-Tetrabromodibenzo-p-dioxin 8.70 8.27 

53a 1,2,4,7,8-Pentabromodibenzo-p-dioxin 7.77 7.56 

54a 1,2,3,7,8-Pentabromodibenzo-p-dioxin 8.18 8.64 

55b 2,3,7-Tribromodibenzo-p-dioxin 8.93 8.67 

56b 2,7-Dibromodibenzo-p-dioxin 7.81 8.05 

57a 2-Bromodibenzo-p-dioxin 6.53 6.45 

58a 2,2’,4,4’-Tetrachloro-1,1’-biphenyl 3.89 3.59 

59b 2,3,4,4’-Tetrachloro-1,1’-biphenyl 4.55 4.98 

60a 2,3,4,5-Tetrachloro-1,1’-biphenyl 3.85 4.47 

61a 3,3’,4,4’-Tetrachloro-1,1’-biphenyl 6.15 5.93 

62b 2,3,3’,4,4’-Pentachloro-1,1’-biphenyl 5.37 5.27 

63b 2,3,4,4’,5-Pentachloro-1,1’-biphenyl 5.39 5.17 

64b 2,3’,4,4’,5-Pentachloro-1,1’-biphenyl 5.04 5.14 

65b 3,3’,4,4’,5-Pentachloro-1,1’-biphenyl 6.89 6.06 

66b 2,3’,4,4’,5’-Pentachloro-1,1’-biphenyl 4.85 4.96 

67b 2,2’,4,4’,5,5’-Hexachloro-1,1’-biphenyl 4.10 4.10 

68a 2,3,3’,4,4’,5-Hexachloro-1,1’-biphenyl 5.15 5.43 

69b 2,3,3’,4,4’,5’-Hexachloro-1,1’-biphenyl 5.33 5.19 

70a 2,3’,4,4’,5,5’-Hexachloro-1,1’-biphenyl 4.80 5.16 

71a 2,3’,4,4’,5’,6-Hexachloro-1,1’-biphenyl 4.00 3.55 
a Training set;   b Test set 

 

Calculation of descriptors 

Different types of descriptors were calculated for each 

molecule in  Table 1 using default settings within Spartan’14 

version 1.1.2 (Wavefunction, 2013) and PaDEL-Descriptor 

version 2.18 (Yap, 2011). These descriptors include steric, 

electrostatic, electronic, spatial, structural, and 

thermodynamic.  

Generation of QSAR models 

QSAR analysis in computational research is responsible for 

the generation of models to correlate biological activity and 

physicochemical properties of a series of compounds. The 

underlying assumption is that the variations of biological 

activity within a series can be correlated with changes in 

measured or computed molecular features (descriptors) of the 

molecules. In the present study, we have used genetic function 

approximation (GFA) technique to generate different 1D, 2D, 

and 3DQSAR models from various descriptors available 

within Spartan’14 version 1.1.2 (Wavefunction, 2013) and 

PaDEL version 2.18 (Yap, 2011) modeling software in order 

to deduce correlation between the structure and biological 

activity of the present series of molecules.  

Homologous modeling 

The amino acid residue sequence (sequence GI: 7304873) of 

AhR conservative domain (the number of residues is from 278 

to 384) for mouse was obtained by searching NCBI. The 

sequence analysis and molecular modeling were completed 

through both Internet resources and PCs. Homologous 3D 

model of AhR was built on SWISS-MODEL net server. The 

nuclear magnetic resonance (NMR) structure of the human 

PAS domain of the hypoxia-inducible factor 2R (HIF-2R) 

available in the Protein Data Bank (http://www.rcsb.org/pdb, 

PDB ID: 1P97) was used as the 3D coordinate template for 

the homology modeling of AhR (Huifenget al., 2011). 

Docking studies  

The binding mode for the PCDDs, PCDFs, and PCBs to AhR 

was investigated by PyRx software using Autodock 4.2 

{http://pyrx.sourceforge.net, Scripps Institute} (Dong-Chan & 

Jae-Ki, 2016; Trott& Olson, 2010).The three dimensional 

(3D) crystal structure of AhR (PDB ID = 1P97) was 

downloaded from PDB (http://www.rcsb.org/pdb). Before 

docking, all water molecules and the cofactors were removed. 

The 3D structures of the compounds were optimized by 

energy minimization using Discovery Studio 4.5 version (DS, 

Accelrys Software Inc., USA) (Lei et al., 2015). The X, Y, Z 

grid of the compounds binding site on the AhR was 

indentified and calculated with the “centroid program” in the 

Discovery Studio 4.5, X= 19.337, Y= 42.037, Z=35.848, 

(Rohmahet al., 2015). PyRx was used to dock the compounds 

into the X/Y/Z grid of the AhR with the flexible docking 

option turned on. To examine the docking conformational 

space comprehensively, the search efficiency was set at 100%. 

The highest binding affinity (the lowest docking energy) score 

was chosen to explore the binding mode of docked compound 

in the AhR protein using PyRx program. For the analysis of 

the docking calculations, 9 conformers were considered for 

each ligand-macromolecule complex, and the resulting 

docking clusters were calculated with a 2.0 Å root mean 

squared deviation (RMSD) tolerance on the heavy atoms 

(Sambasivaraoet al., 2014). The two-dimensional (2D) and 

3D molecular interaction models of the docked compounds on 

the AhR protein and receptor surface shape modeling 

(involving hydrogen bonding) were displayed using Ligplot 

and Discovery Studio (Maryamet al., 2015; Ushaet al., 2014).  

Model validation  

The internal and external validation parameters were used to 

evaluate the fitting ability, stability, reliability and predictive 

ability of the developed models. The validation parameters 

were compared with the minimum recommended value for a 

generally acceptable QSAR model (Ravinchandranet al., 

http://www.ftstjournal.com/
http://www.rcsb.org/pdb
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2011) showed in Table 2. The performance of external 

validation was characterized by the determination coefficient 

(R2), root mean standard error (RMSE) and external explained 

variance (𝑅𝑒𝑥𝑡
2 ), which are defined as follows (Huifenget al., 

2011): 

𝑅2 = 1 −
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑)

2

∑(𝑌𝑜𝑏𝑠 − �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
2                      1 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1

𝑛
                  2 

 

𝑅𝑒𝑥𝑡
2 = 1 −

∑(𝑌𝑜𝑏𝑠(𝑇𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡))
2

∑(𝑌𝑜𝑏𝑠(𝑇𝑒𝑠𝑡) − �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
2             3 

Where𝑌𝑜𝑏𝑠;  𝑌𝑝𝑟𝑒𝑑; �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 are observed activity values, 

predicted activity values and the mean observed activity 

values of the samples in the training set, respectively. n is the 

total number of samples in the training set, 𝑌𝑜𝑏𝑠(𝑇𝑒𝑠𝑡), 

𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡), �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔are observed activity values, predicted 

activity values and the mean observed activity values of the 

samples in the test set, respectively. 

 

Table 2 Minimum recommended value of Validation 

Parameters for a generally acceptable QSAR model 

compared with model 1 

Symbol Name 
Threshold 

Value 

Values for 

model 1 

R2 Coefficient of determination ≥ 0.6 0.930 

P (95%) Confidence interval at 95% 
confidence level 

< 0.05 P < 0.0001 

Q2 Cross validation coefficient ≥ 0.5 0.911 

R2 - Q2 Difference between R2 and Q2 ≤ 0.3 0.019 
Next.test set Minimum number of external 

test set 

≥ 5 22 

R2
ext Coefficient of determination 

for external test set 
≥ 0.6 0.824 

RMSE 
Root mean 

standard error 

smaller 

value is 
better 

0.353 

 

 

Results and Discussions 
The target sequence of the ligand bind domain of the mouse 

(278- 384) AhR was used as a query to search for homologues 

protein structure belonging to the category of nuclear 

receptors that could serve as templates. The x-ray crystalline 

structure of the high affinity heterodimer of HIF-2R alpha and 

ARNT c-terminal pas domains (resolution: 1.65𝐴𝑜) with the 

artificial ligand THS017 (PDB ID 1P97) showed detectable 

degree of similarity with the query sequence.  

The image of PCB, PCDF and PCDD docked into the 

homology model of mouse AhR is shown in Fig. 1(a, b & c). 

The result of docking of PCB, PCDF and PCDD into mAhR 

showed that the residues lining the ligand binding cavity 

include Glu19, Phe61, Arg58, Asn44, Ile18, Val46, Gln62, 

Ile45, Leu57,  Gly64, Tyr91, Thr88, Ile90, Val71, Ser73, 

Arg89, Leu96. Also Interactions such as Van der Waals, Pi-

sigma, Amide-Pi stacked, Alkyl, Pi-Alkyl and Pi-Pi stacked 

were observed between receptor and ligand. This is also in 

accordance with the literature report of Huifenget al. (2011); 

thus, validating our model further. 

 

 
 

 

 
Fig. 1: Receptor – Ligand interactions on a 2D diagram of (a) PCB, 

(b)PCDF and (c)PCDD with receptor 

 

 
 

 
Fig. 2:Docking views of PCB in the binding site of AhR(a) H-bonds 

and (b) interpolated charge 

(a) 

(b) 

(c) 

(a) 

(b) 
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Acting as an ‘anchor’, the hydrogen-bonding intensely 

determines the 3D space position of the benzene ring in the 

binding pocket, and facilitates the hydrophobic interaction of 

the PCB with Phe61, Glu19, Ile319, Arg58 and Val46, as 

shown in Fig. 2(a). The molecular surface potential indicates 

the charge distribution in a molecule (Politzeret al., 1984), 

which gauge the basicity and nucleophilicity of a molecule 

(Colominaset al., 1998). As shown in Fig. 2(b), the binding 

site has negative potentials, from which it can also be 

concluded that the positive potentials of the PCB molecules 

facilitate them to bind with receptor. 

QSAR development and validation 

QSAR analysis in computational research is responsible for 

the generation of models to correlate biological activity and 

physicochemical properties of a series of compounds. The 

underlying assumption is that the variations of biological 

activity within a series can be correlated with changes in 

measured or computed molecular features of the molecules. In 

the present study, QSAR model generation was performed by 

GFA technique. The application of the GFA algorithm allows 

the construction of high-quality predictive models and makes 

available additional information not provided by standard 

regression techniques, even for data sets with many features. 

GFA was performed using 10,000 crossovers, smoothness 

value of 2.0 and other default settings for each combination. 

The number of terms in the equation was fixed to five 

including constant in the training set. The set of equations 

generated were evaluated on the following basis: (a) 

Friedman’s Lack of fit (LOF) measure; (b) Variable terms in 

the equations; (c) Cross validated and non-cross validated 𝑅2; 

(d) Predictive ability of the equation 𝑅𝑝𝑟𝑒𝑑
2 .  GFA technique 

was used since it generates a population of equations rather 

than one single equation for correlation between biological 

activity and physicochemical properties. Table 3 shows the 

Summary of generated GFA equations from Materials Studio 

8.0. 

 

 

 

 

Table 3:  Summary of generated GFA equations from materials studio 8.0 
  Equation 1 Equation 2 Equation 3 Equation 4 Equation 5 

1 Friedman LOF 0.6048 0.6142 0.6178 0.6241 0.6253 
2 R-squared 0.9303 0.9293 0.9288 0.9281 0.9279 

3 Adjusted R-squared 0.9222 0.9210 0.9206 0.9198 0.9196 

4 Cross validated R-squared 0.9109 0.9135 0.9125 0.9131 0.9133 
5 Significant Regression Yes Yes Yes Yes Yes 

6 Significance-of-regression F-value 114.8633 112.9695 112.2619 111.0372 110.8042 

7 Critical SOR F-value (95%) 2.4591 2.4591 2.4591 2.4591 2.4591 
8 Replicate points 0 0 0 0 0 

9 Computed experimental error 0.0000 0.0000 0.0000 0.0000 0.0000 

10 Lack-of-fit points 43 43 43 43 43 
11 Min expt. error for non-significant LOF (95%) 0.3211 0.3236 0.3245 0.3262 0.3265 

 

 

Table 4: Description of the descriptors used in the QSAR optimization model 
Descriptors Meaning 

BCUTw-1h nlow highest atom weighted BCUTS 

SpMax7_Bhp Largest absolute eigenvalue of Burden modified matrix - n 7 / weighted by relative polarizabilities 

Gmin Minimum E-State 

RDF65e Radial distribution function - 065 / weighted by relative Sanderson electronegativities 

E1v 1st component accessibility directional WHIM index / weighted by relative van der Waals volumes 

 

 

Table 5: Pearson’s correlation matrix for descriptors used in the model 1 and pEC50 

  PEC50 

BCUTw-

1h SpMin7_Bhp gmin RDF65e E1v 

PEC50 1 

     
BCUTw-1h 0.46601 1 

    
SpMin7_Bhp 0.055096 0.047723 1 

   
gmin -0.36428 -0.66601 -0.69776 1 

  
RDF65e -0.39905 -0.21615 0.020404 0.150597 1 

 
E1v 0.733047 0.321281 -0.25779 0.065759 0.08446 1 

 

 

In a QSAR study, the quality of a model is expressed by its 

fitting and prediction ability. In order to build and test the 

model, a data set of 71 compounds was separated into a 

training set of 49 compounds, which was used to build model 

and a test set of 22 compounds, which was applied to validate 

the built model. The GFA analysis led to the derivation of five 

models, with five descriptors as shown in Table 3, but only 

the best model (Equation 1) was selected and reported due to 

small value of LOF, high value of R2. The Description of the 

descriptors used in the QSAR optimization model are shown 

in Table 4. Fig. 3 is the graph of calculated pEC50 against the 

experimental values for the training sets. The R2 value of the 

QSAR model was 0.930, indicating a high goodness-of-fit of 

the model. 𝑄𝐿𝑂𝑂
2  of the QSAR was as high as 0.911, implying 

good robustness of the model. The differences between R2 and 

𝑄𝐿𝑂𝑂
2  (0.019) did not exceed 0.3, indicating no over-fitting in 

the model (Golbraikh&Tropsha, 2002).  
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Fig. 3:Plot of observed versus predicted pEC50 values for the 

training sets 

 

 
Fig. 4:Plot of observed versus predicted pEC50 values for the 

validation sets 

 

As shown in Figs. 3, 4 and 5, the predicted pEC50 values were 

consistent with the observed values for both the validation and 

training sets. The model revealedacceptable predictability 

with 𝑅𝑝𝑟𝑒𝑑
2 = 0.824, RMSEvalues for the training and test sets 

are 0.353 and 0.432, respectively. In summary, the developed 

QSAR model showed satisfactory performance. 

pEC50 = 5.315 -0.055 BCUTw-1h -4.151 SpMin7_Bhp -5.501 

gmin -0.306 RDF65e +15.875 E1v 

n(training set) = 49, R2 = 0.930, 𝑄𝐿𝑂𝑂
2   = 0.911,RMSE = 0.353 

(training set) 

n(validation set) = 22, R2
ext= 0.924, RMSE = 0.432 

(validation set) 

 

 
Fig. 5:Plot of observed versus predicted pEC50 values for the 

training and validation sets 

 
Fig. 6:The residuals vs. observed pEC50 values for the training 

and test sets 

 

In this equation, 𝑅2 is the squared correlation 

coefficient,𝑄𝐿𝑂𝑂
2 , is the cross-validation coefficients for leave 

one out, and RMSE is the root mean square error. The 

predicted values for pEC50 for the compounds in the training 

and test sets using equation 1 were plotted against the 

experimental pEC50 values in Figs. 3, 4 and 5. Also, the plot 

of the residual for the predicted values of pEC50 for both the 

training and test sets against the observed pEC50 values are 

shown in Fig. 6. As can be seen the model did not show any 

proportional and systematic error, because the propagation of 

the residuals on both sides of zero is random. The Pearson’s 

correlation matrixes for descriptors used in the model are 

shown in Table 5. The result from this Correlation matrix 

shows clearly that the correlation coefficients between each 

pair of descriptors is very low, thus, it can be inferred that 

there exist no significant inter-correlation among the 

descriptors used in building the model. 

 

Conclusion 

Docking analysis showed that hydrogen bonding, 

hydrophobic interactions, Van der Waals, Pi-sigma, Amide-Pi 

stacked, Alkyl, Pi-Alkyl and 𝜋 − 𝜋 interactions between 

compounds and AhR governed the binding affinities. GFA 

handled the physico-chemical descriptors effectively in the 

generation of QSAR models with significant statistical terms 

including external predictivity. Equation 1 from the five 

models generated was selected as representative equation and 

was able to explain more than 93%(𝑅2 = 0.9303) of the total 

variance. The structural interpretation of the obtained models 

shows that the distribution of charge, the distant 

intramolecular, molecular size, shape profiles, polarizability 

and electropological interactions play important roles for 

modeling the toxicity. The developed QSAR model had good 

robustness, predictive ability andmechanism interpretability, 

which could be applied to predictthe binding affinity of some 

polychlorinated aromatic compounds. 
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